

Palladium and Copper Cocatalyzed Tandem N–H/C–H Bond Functionalization: Synthesis of CF₃-Containing Indolo- and Pyrrolo[2,1-*a*]isoquinolines

Lei-Lei Sun, Zhi-Yong Liao, Ri-Yuan Tang, Chen-Liang Deng, and Xing-Guo Zhang*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

Supporting Information

ABSTRACT: A palladium- and copper-catalyzed tandem N–H/C-H bond functionalization reaction of *ortho*-(2-chlorovinyl)bromobenzenes with indoles and pyrroles has been developed. A variety of CF₃-containing indolo- and pyrrolo[2,1-*a*]isoquinolines were prepared in moderate to good with the mediation of 1 here 2.2.2 tri

good yields via the cyclization of 1-bromo-2-(2-chloro-3,3,3-trifluoroprop-1-enyl)benzenes with indoles and pyrroles.

INTRODUCTION

Indolo- and pyrrolo[2,1-a]isoquinolines are important class of nitrogen-containing fused polycyclic compounds, which occur widely in pharmaceutical molecules,¹ functional materials,² and natural products.³ Thus, a number of synthetic strategies have been developed for the construction of these entities,⁴ most of them requiring complicated multistep procedures involving substantial byproducts.⁵ Recently, transition-metal-catalyzed C-H bond functionalization has received considerable attention owing to its atom economy, which could transform the unreactive C-H bond into diverse functional groups.⁶ The tandem reactions combining a C-H bond functionalization with a C-heteroatom bond forming reaction have emerged as a powerful tool for the synthesis of multiring heterocyclic compounds because of their efficiency and selectivity.⁷ For example, Larock and co-workers reported the synthesis of indolo- and pyrrolo [2,1-a]isoquinolines by copper catalyzed tandem C-N bond forming reaction and C-H bond arylation of ortho-haloarylalkyne.⁸ Xi and co-workers also developed the copper catalyzed consecutive N-alkenylation and C-alkenylation of azoles for the synthesis of N-bridgehead azolopyridines.⁹ It is well-known that the introduction of a trifluoromethyl group into organic compounds has a significant effect on biological activity and often manifests changes in chemical and physical properties.¹⁰ As part of a continuing interest in the synthesis of trifluoromethyl-containing heterocyclic compounds,¹¹ we wish to prepare CF₃-containing isoquinoline derivatives from our previous CF₃-containing building blocks via tandem cyclization. Herein, we report an efficient protocol for the synthesis of trifluoromethyl-containing indolo- and pyrrolo [2,1-a] isoquinolines from the palladium and copper cocatalyzed tandem N-H/C-H bond functionalization reaction of 1-bromo-2-(2-chloro-3,3,3-trifluoroprop-1-envl)benzenes¹² with indoles and pyrroles (Scheme 1).

Scheme 1

RESULTS AND DISCUSSION

We began our study by examining the reaction between 2chloro-1-(2-bromophenyl)-3,3,3-trifluoropropylene 1a and 1Hindole 2a to screen the optimal reaction conditions, and the results are summarized in Table 1. Initially, substrate 1a was treated with 1H-indole 2a, Pd(OAc)₂, and Cs₂CO₃ in DMSO at 140 °C for 5 h, but only trace amounts of the target product 3a was observed (entry 1). It was found that PPh₃ could promote the reaction and the yield increased to 21% in the presence of 20 mol % PPh₃ (entry 2). Larock and Xi's results revealed that copper catalysts could mediate the amination and alkenylation of indole or imidazole.^{8,9} Therefore, various copper salts such as CuI, CuBr, CuCl, Cu(OTf)2, and $Cu(OAc)_2$ were examined (entries 3–7). We found that the desired product 3a could be isolated in 72% yield by adding 20 mol % of CuI as cocatalyst (entry 3). The other copper catalysts were less effective than CuI. It is noteworthy that CuI could not promote the reaction in the absence of $Pd(OAc)_2$ (entry 8). Subsequently, some phosphine ligands were screened to optimize the reaction conditions, but other ligands were found less effective than PPh_3 (entries 9–12). During the examination of the effect of base (entries 13-15), we found that the reaction yields decreased dramatically in the presence of mild bases such as K₂CO₃ and K₃PO₄. Lower yield was also observed when Cs₂CO₃ was replaced by *t*-BuONa. Finally, the effects of solvents and reaction temperature were evaluated (entries 16-19). The results showed that the reaction proceeded optimally in DMSO at 140 °C.

Received: January 11, 2012 Published: February 21, 2012

Table 1. Screening Conditions^a

entry	catalyst	ligand	base	solvent	yield (%)
1	$Pd(OAc)_2$	-	Cs ₂ CO ₃	DMSO	<5
2	$Pd(OAc)_2$	L1	Cs ₂ CO ₃	DMSO	21
3	Pd(OAc) ₂ /CuI	L1	Cs_2CO_3	DMSO	72
4	Pd(OAc) ₂ /CuBr	L1	Cs_2CO_3	DMSO	34
5	Pd(OAc) ₂ /CuCl	L1	Cs_2CO_3	DMSO	31
6	$Pd(OAc)_2/Cu(OTf)_2$	L1	Cs ₂ CO ₃	DMSO	42
7	$Pd(OAc)_2/Cu(OAc)_2$	L1	Cs ₂ CO ₃	DMSO	49
8	CuI	L1	Cs ₂ CO ₃	DMSO	0
9	Pd(OAc) ₂ /CuI	L2	Cs_2CO_3	DMSO	37
10	Pd(OAc) ₂ /CuI	L3	Cs_2CO_3	DMSO	43
11	Pd(OAc) ₂ /CuI	L4	Cs ₂ CO ₃	DMSO	39
12	Pd(OAc) ₂ /CuI	L5	Cs_2CO_3	DMSO	47
13	Pd(OAc) ₂ /CuI	L1	<i>t</i> -BuONa	DMSO	65
14	Pd(OAc) ₂ /CuI	L1	K_2CO_3	DMSO	14
15	Pd(OAc) ₂ /CuI	L1	K ₃ PO ₄	DMSO	12
16	Pd(OAc) ₂ /CuI	L1	Cs_2CO_3	DMF	60
17	Pd(OAc) ₂ /CuI	L1	Cs ₂ CO ₃	NMP	25
18	Pd(OAc) ₂ /CuI	L1	Cs_2CO_3	toluene	<5
19 ^b	Pd(OAc) ₂ /CuI	L1	Cs ₂ CO ₃	DMSO	53

"Reaction conditions: 1a (0.2 mmol), 2a (0.22 mmol), Pd(OAc)₂ (10 mol %), $\lfloor Cu \rfloor$ (20 mol %), ligand (20 mol %) and base (3 equiv) in solvent (2 mL) at 140 °C under N₂ atmosphere for 5 h. ^bAt 120 °C.

With the optimal reaction conditions in hand, the substrate scope of both indoles and *ortho*-(2-chlorovinyl)bromobenzenes for this tandem reactions was examined (Table 2). We initially investigated the reaction of a variety of indoles 2b-2j with 1bromo-2-(2-chloro-3,3,3-trifluoroprop-1-enyl)benzenes 1a (entries 1-9). The results demonstrated that a wide range of indoles bearing both electron-withdrawing and electrondonating groups were suitable substrates for the cyclization and gave the corresponding products in moderate to excellent yields. For example, electron-rich indoles (2b-2e) bearing methyl, ethyl or methoxyl substituents provided the desired products in good yields (entries 1-4). The configuration of the product was confirmed by X-ray single-crystal diffraction analysis of compound 3e. The 5-aminoindole 2f could be converted to indolo[2,1-*a*]isoquinoline 3f in 51% yield and the unprotected amino group did not participate in amination (entry 5). Indoles containing halogen atom (Br, F) or electronwithdrawing substituents (cyano, nitro) also underwent the cyclization smoothly to afford the corresponding product in moderate yields (entries 6-9). Subsequently, various ortho-(2chlorovinyl)bromobenzenes 1b-1f bearing different functional groups on the aryl moiety were examined (entries 10-14). The results showed that several substituents (such as methyl, methoxy, chloro, fluoro, and trifluoromethyl groups) were tolerated well under the standard conditions. Substrate 1c with a 4-methoxy group, for instance, was treated with indole 2a, $Pd(OAc)_2$, CuI, PPh₃, and Cs₂CO₃ to afford desired product 31

in 86% yield (entry 11). Interestingly, substrate **1f** bearing an electron-withdrawing trifluoromethyl group also underwent the tandem reactions smoothly with indole **2a** to give product **3o** in 73% yield (entry 14).

The tandem N-H/C-H bond functionalization reaction was successfully extended to pyrroles and various pyrrolo[2,1*a*]isoquinolines were prepared. As listed in Table 3, the reaction of substrate 1a with 1H-pyrrole 4a under the standard conditions generated the desired pyrrolo[2,1-a]isoquinoline 5a in 70% yield (entry 1). 2,4-Dimethyl-1H-pyrrole 4b could also react with substrate 1a successfully to afford product 5b in 61% yield (entry 2). Subsequently, the reactions of a variety of ortho-(2-chlorovinyl)bromobenzenes 1b-1f with 1H-pyrrole 4a were investigated (entries 3-7). Several functional groups (such as Me, MeO, Cl, F, and CF_3 groups) on the aromatic ring of bromobenzenes were suitable for the tandem reactions (entries 3-7). Methyl-substituted substrate 1b, for instance, underwent the reaction with pyrrole 4a smoothly to provide product 5c in 62% yield (entry 3). Other substituents such as methoxyl, Cl, and F groups furnished the desired products in good yields (entries 4-6). Notably, substrate 1f, bearing an electron-withdrawing CF₃ group, could also be converted to pyrrolo[2,1-a]isoquinoline 5g in 50% yield (entry 7).

To elucidate the mechanism, some control experiments were carried out (Scheme 2). Treatment of (2-chloro-3,3,3-trifluoroprop-1-en-1-yl)benzene 1g with 1*H*-indole 2a under the standard conditions afforded the N-alkenylated product 6

Table 2. $Pd(OAc)_2/CuI$ Catalyzed Tandem Reaction of *ortho*-(2-Chlorovinyl)bromobenzenes with Indoles^{*a*}

^{*a*}Reaction conditions: 1 (0.2 mmol), 2 (0.22 mmol), $Pd(OAc)_2$ (10 mol %), CuI (20 mol %), PPh₃ (20 mol %) and Cs_2CO_3 (3 equiv) in DMSO (2 mL) at 140 °C under N₂ atmosphere for 5 h.

in 51% yield (Scheme 2, eq 1). The result indicated that the N–H bond was activated preferentially under the standard conditions. Subsequently, a control reaction of substrate 1a and 1*H*-indole 2a was carried out in the absence of $Pd(OAc)_2$ (eq 2). However, only the N-alkenylated product 7 could be isolated in 41% yield and cyclization product 3a could not be observed. This result suggested that the copper-catalyzed amination of vinyl chlorides with indole could proceed successfully. As expected, compound 7 could be converted into the desired product 3a in 90% yield under the standard conditions (eq 3).

"Reaction conditions: 1 (0.2 mmol), 4 (0.22 mmol), $Pd(OAc)_2$ (10 mol %), CuI (20 mol %), PPh₃ (20 mol %) and Cs_2CO_3 (3 equiv) in DMSO (2 mL) at 140 °C under N₂ atmosphere for 5 h.

Scheme 2. Control Experiments

On the basis of the present results and the reported mechanism,^{8,9,13} a possible mechanism was proposed as outlined in Scheme 3. After copper-catalyzed amination of substrate 1a, the obtained compound 7 undergoes an oxidative addition process with Pd(0) to afford intermediate **A**. The intramolecular coordination of Pd(II) with indole moiety might provide palladium complex **B**, and the following elimination of HBr in the presence of Cs_2CO_3 provides intermediate **C**. Finally, reductive elimination of **C** affords product **3a** and regenerated Pd(0) species.

CONCLUSION

In summary, we have developed an efficient route for the synthesis of trifluoromethyl substituted indolo- and pyrrolo-[2,1-a] isoquinolines. In the presence of Pd(OAc)₂, CuI, PPh₃, and Cs₂CO₃, a variety of 1-bromo-2-(2-chloro-3,3,3-trifluor-oprop-1-enyl)benzenes undergo tandem N–H/C–H bond

Scheme 3. Possible Mechanism

functionalization reactions with various indoles and pyrroles to afford the corresponding isoquinolines in moderate to good yields. The present process could facilitate the synthetic applications of trifluoromethyl-containing building blocks, and also provides a new optional route for the construction of the isoquinoline ring.

EXPERIMENTAL SECTION

Typical Experimental Procedure for the Palladium and Copper Cocatalyzed Tandem Reaction. A mixture of 1-bromo-2-(2-chloro-3,3,3-trifluoroprop-1-enyl)benzenes 1 (0.2 mmol), indole 2 or pyrrole 4 (0.22 mmol), $Pd(OAc)_2$ (4.5 mg, 10 mol %), CuI (7.6 mg, 20 mol %), PPh₃ (10.5 mg, 20 mol %), Cs₂CO₃ (195.5 mg, 3 equiv), in DMSO (2 mL), was evacuated and backfilled with nitrogen (3 cycles) and then stirred at 140 °C for 5 h or until complete consumption of starting material was indicated by TLC or GC–MS analysis. After the reaction was completed, the mixture was filtered through glass filter and washed with ethyl acetate. The mixture was washed with brine and extracted with ethyl acetate. The organic layers were dried with anhydrous Na₂SO₄ and evaporated under vacuum, and the residue was purified by flash column chromatography (hexane/ ethyl acetate) to give products 3, and 5–7.

6-(*Trifluoromethyl*)*indolo*[2,1-*a*]*isoquinoline* (**3***a*). Yellow solid (41.1 mg, 72% yield), mp 90.0–91.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.0 Hz, 1H), 8.11–8.09 (m, 1H), 7.85–7.83 (m, 1H), 7.64–7.55 (m, 2H), 7.49–7.46 (m, 1H), 7.42 (s, 1H), 7.40–7.35 (m, 2H), 7.27 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 136.0, 131.1, 129.7, 129.5, 127.9, 127.9, 127.3, 125.7, 125.2 (q, *J*_{C-F} = 34.5 Hz), 123.3, 122.5, 122.1, 121.6 (q, *J*_{C-F} = 270.0 Hz), 120.7, 113.9 (q, *J*_{C-F} = 7.6 Hz), 112.1 (q, *J*_{C-F} = 7.1 Hz), 96.5; ¹⁹F NMR (470 MHz, CDCl₃) δ: –63.2 (s, 3F); IR (neat, cm⁻¹): 3026, 1601, 1556, 1454, 1416, 1121, 737; LRMS (EI, 70 eV) *m*/*z* (%): 285 (M⁺, 100), 265 (14), 216 (11), 142 (14); HRMS (ESI) calcd for C₁₇H₁₁F₃N⁺ ([M + H]⁺) 286.0838; found, 286.0836.

10-Methyl-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3b**). Yellow solid (36.3 mg, 61% yield), mp 131.4–132.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 1H), 7.97–7.95 (m, 1H), 7.61–7.55 (m, 3H), 7.47–7.43 (m, 1H), 7.32 (s, 1H), 7.23 (s, 1H), 7.20–7.17 (m, 1H), 2.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.0, 132.0, 129.8, 129.6, 129.4, 127.9, 127.7, 127.3, 125.7, 125.1 (q, *J*_{C-F} = 34.4 Hz), 123.9, 123.3, 121.6 (q, *J*_{C-F} = 270.0 Hz), 120.1, 113.6 (q, *J*_{C-F} = 7.5 Hz), 111.7 (q, *J*_{C-F} = 7.0 Hz), 96.0, 21.3; ¹⁹F NMR (470 MHz, CDCl₃) δ: -63.4 (s, 3F); IR (neat, cm⁻¹): 2914, 1627, 1540, 1463, 1417, 1116, 752; LRMS (EI, 70 eV) *m/z* (%): 299 (M⁺, 100), 278 (6), 228 (8), 149 (12), 129 (6); HRMS (ESI) calcd for C₁₈H₁₃F₃N⁺ ([M + H]⁺) 300.0995; found, 300.0989.

12-Methyl-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3c**). Yellow solid (46.0 mg, 77% yield), mp 111.0–112.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 8.5 Hz, 1H), 8.08–8.07 (m, 1H), 7.84–7.82 (m, 1H), 7.58–7.55 (m, 2H), 7.43–7.37 (m, 3H), 7.16 (s, 1H), 2.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 130.9, 130.3, 129.6, 129.3, 128.9, 127.8, 126.8, 126.7, 125.2 (q, J_{C-F} = 34.1 Hz), 124.4,

122.3, 121.9, 121.7 (q, $J_{C-F} = 270.1$ Hz), 118.4, 113.7 (q, $J_{C-F} = 8.0$ Hz), 111.9 (q, $J_{C-F} = 7.3$ Hz), 107.5, 11.8; ¹⁹F NMR (470 MHz, CDCl₃) δ : -62.8 (s, 3F); IR (neat, cm⁻¹): 3089, 2903, 1714, 1652, 1599, 1481, 1418, 1314, 1198, 1124, 735; LRMS (EI, 70 eV) m/z (%): 299 (M⁺, 100), 278 (7), 228 (12), 150 (8), 130 (23); HRMS (ESI) calcd for C₁₈H₁₃F₃N⁺ ([M + H]⁺) 300.0995; found, 300.0991.

8-Ethyl-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3d**). Yellow oil (41.9 mg, 67% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 7.5 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.55–7.52 (m, 1H), 7.46–7.43 (m, 1H), 7.34–7.31 (m, 1H), 7.29 (s, 1H), 7.22–7.20 (m, 2H), 3.08 (q, *J* = 7.5 Hz, 2H), 1.21 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 134.4, 132.3, 130.8, 129.5, 129.3 (q, *J*_{C-F} = 34.8 Hz), 128.0, 127.7, 127.6, 126.5, 123.3, 123.3, 122.4 (q, *J*_{C-F} = 273.3 Hz), 122.1, 117.7, 115.5 (q, *J*_{C-F} = 4.9 Hz), 97.5, 25.2, 14.9; ¹⁹F NMR (470 MHz, CDCl₃) δ : –56.3 (s, 3F); IR (neat, cm⁻¹): 2926, 1714, 1625, 1458, 1418, 1313, 1124, 741; LRMS (EI, 70 eV) *m*/*z* (%): 313 (M⁺, 100), 298 (21), 244 (70), 229 (21), 114 (13); HRMS (ESI) calcd for C₁₉H₁₅F₃N⁺ ([M + H]⁺) 314.1151; found, 314.1146.

10-Methoxy-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3e**). Yellow solid (46.1 mg, 73% yield), mp 117.0–118.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 1H), 7.99–7.96 (m, 1H), 7.63–7.56 (m, 2H), 7.48–7.45 (m, 1H), 7.34 (s, 1H), 7.25 (s, 1H), 7.22 (s, 1H), 7.02–6.99 (m, 1H), 3.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 136.6, 130.6, 129.6, 127.9, 127.7, 127.0, 126.2, 125.7, 124.9 (q, J_{C-F} = 34.3 Hz), 123.3, 121.6 (q, J_{C-F} = 270.0 Hz), 114.9 (q, J_{C-F} = 7.8 Hz), 112.5, 111.5 (q, J_{C-F} = 7.0 Hz), 101.2, 96.2, 55.6; ¹⁹F NMR (470 MHz, CDCl₃) δ : -63.6 (s, 3F); IR (neat, cm⁻¹): 2931, 1615, 1462, 1420, 1328, 1129, 741; LRMS (EI, 70 eV) m/z (%): 315 (M⁺, 100), 286 (9), 272 (79), 203 (7), 157 (8); HRMS (ESI) calcd for C₁₈H₁₃F₃NO⁺ ([M + H]⁺) 316.0944; found, 316.0944.

6-(*Trifluoromethyl*)*indolo*[2,1-*a*]*isoquinolin-10-amine* (**3f**). Yellow solid (30.5 mg, 51% yield), mp 153.3–154.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, *J* = 8.5 Hz, 1H), 7.90–7.86 (m, 1H), 7.61–7.52 (m, 2H), 7.47–7.41 (m, 1H), 7.22–7.20 (m, 2H), 7.04 (s, 1H), 6.81–6.77 (m, 1H), 3.73 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 141.8, 136.5, 130.9, 129.4, 127.8, 127.6, 127.0, 125.8, 125.8, 124.9 (q, *J*_{C-F} = 34.3 Hz), 123.2, 121.6 (q, *J*_{C-F} = 270.0 Hz), 114.7 (q, *J*_{C-F} = 7.6 Hz), 112.9, 111.0 (q, *J*_{C-F} = 7.0 Hz), 103.9, 95.4; ¹⁹F NMR (470 MHz, CDCl₃) δ: -63.7 (s, 3F); IR (neat, cm⁻¹): 3421, 3246, 2357, 1621, 1599, 1459, 1419, 1115, 834; LRMS (EI, 70 eV) *m/z* (%): 300 (M⁺, 100), 280 (10), 231 (8), 150 (18), 115 (6); HRMS (ESI) calcd for C₁₇H₁₂F₃N₂⁺ ([M + H]⁺) 301.0947; found, 301.0947.

10-Bromo-ō-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3g**). Yellow solid (42.4 mg, 58% yield), mp 148.5–150.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 1H), 7.93–7.91 (m, 2H), 7.63–7.58 (m, 2H), 7.51–7.48 (m, 1H), 7.42–7.40 (m, 1H), 7.29–7.28 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.0, 131.1, 129.9, 129.7, 128.3, 128.0, 126.9, 125.8, 124.8, 124.8 (q, J_{C-F} = 34.6 Hz), 123.5, 122.9, 121.5 (q, J_{C-F} = 270.1 Hz), 116.1, 115.3 (q, J_{C-F} = 7.8 Hz), 112.7 (q, J_{C-F} = 6.9 Hz), 95.8; ¹⁹F NMR (470 MHz, CDCl₃) δ : –63.3 (s, 3F); IR (neat, cm⁻¹): 3082, 1649, 1593, 1455, 1405, 1224, 749; LRMS (EI, 70 eV) *m/z* (%): 365 (M⁺, 96), 363 (M⁺, 100), 284 (46), 264 (27), 142 (17), 93 (11); HRMS (ESI) calcd for C₁₇H₁₀BrF₃N⁺ ([M + H]⁺) 363.9943; found, 363.9941.

10-Fluoro-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3h**). Yellow solid (36.5 mg, 60% yield), mp 132.1–132.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.0 Hz, 1H), 8.02–8.00 (m, 1H), 7.63–7.57 (m, 2H), 7.50–7.47 (m, 1H), 7.43–7.40 (m, 1H), 7.34 (s, 1H), 7.27 (s, 1H), 7.11–7.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0 (d, J_{C-F} = 238.3 Hz), 137.4, 130.4 (d, J_{C-F} = 10.4 Hz), 129.8, 128.2, 128.0, 127.7, 126.8, 125.7, 124.9 (q, J_{C-F} = 34.4 Hz), 123.4, 121.5 (q, J_{C-F} = 270.0 Hz), 115.2 (q, J_{C-F} = 8.1 Hz), 112.2 (q, J_{C-F} = 7.1 Hz), 110.6 (d, J_{C-F} = 25.8 Hz), 104.9 (d, J_{C-F} = 23.0 Hz), 96.4 (d, J_{C-F} = 4.5 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ : -63.4 (s, 3F), -120.7 (s, 1F); IR (neat, cm⁻¹): 3037, 1607, 1562, 1463, 1416, 1314, 1129, 753; LRMS (EI, 70 eV) *m*/*z* (%): 303 (M⁺, 100), 283 (16), 234 (15), 151 (13), 117 (5); HRMS (ESI) calcd for C₁₇H₁₀F₄N⁺ ([M + H]⁺) 304.0744; found, 304.0738.

6-(Trifluoromethyl)indolo[2,1-a]isoquinoline-10-carbonitrile (3i). Yellow solid (32.8 mg, 53% yield), mp 207.1–208.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 8.0 Hz, 1H), 8.16 (s, 1H), 8.12 (d, *J* = 9.0 Hz, 1H), 7.69–7.65 (m, 2H), 7.58–7.54 (m, 2H), 7.44 (s, 1H), 7.38 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 132.2, 130.4, 129.3, 129.1, 128.3, 126.6, 126.0, 125.7, 124.6 (q, *J*_{C-F} = 34.8 Hz), 124.1, 123.7, 121.3 (q, *J*_{C-F} = 269.9 Hz), 119.8, 114.8 (q, *J*_{C-F} = 8.0 Hz), 114.0 (q, *J*_{C-F} = 6.9 Hz), 105.8, 96.7; ¹⁹F NMR (470 MHz, CDCl₃) δ : -63.0 (s, 3F); IR (neat, cm⁻¹): 2223, 1644, 1540, 1463, 1413, 1317, 1119, 745; LRMS (EI, 70 eV) *m/z* (%): 310 (M⁺, 100), 290 (6), 241 (8), 207 (8), 155 (7); HRMS (ESI) calcd for C₁₈H₁₀F₃N₂⁺ ([M + H]⁺) 311.0791; found, 311.0792.

10-Nitro-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3***j*). Yellow solid (37.5 mg, 57% yield), mp 184.6–186.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.23–8.13 (m, 3H), 7.71–7.67 (m, 2H), 7.61–7.57 (m, 2H), 7.42 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.2, 138.8, 133.2, 130.5, 129.1, 128.3, 126.8, 126.6, 124.6 (q, $J_{C-F} = 34.8 \text{ Hz}$), 123.8, 121.3 (q, $J_{C-F} = 270.3 \text{ Hz}$), 117.1, 116.6, 114.4 (q, $J_{C-F} = 6.9 \text{ Hz}$), 114.2 (q, $J_{C-F} = 8.1 \text{ Hz}$), 107.2, 96.7; ¹⁹F NMR (470 MHz, CDCl₃) δ : -63.0 (s, 3F); IR (neat, cm⁻¹): 1613, 1556, 1517, 1462, 1341, 1114, 737; LRMS (EI, 70 eV) m/z (%): 330 (M⁺, 100), 300 (42), 284 (77), 264 (31), 150 (9); HRMS (ESI) calcd for C₁₇H₁₀F₃N₂O₂+ ([M + H]⁺) 331.0689; found, 331.0694.

2-Methyl-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3k**). Yellow solid (32.9 mg, 55% yield), mp 113.4–114.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 7.5 Hz, 1H), 7.95 (s, 1H), 7.84–7.82 (m, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.39–7.34 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.23 (s, 1H), 2.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.1, 136.0, 131.1, 129.5, 129.3, 127.8, 127.2, 124.3 (q, *J*_{C-F} = 34.5 Hz), 123.4, 123.3, 122.4, 121.9, 121.7 (q, *J*_{C-F} = 272.4 Hz), 120.6, 113.9 (q, *J*_{C-F} = 7.6 Hz), 112.1 (q, *J*_{C-F} = 7.1 Hz), 96.2, 21.9; ¹⁹F NMR (470 MHz, CDCl₃) δ : -62.9 (s, 3F); IR (neat, cm⁻¹): 3044, 2920, 1615, 1534, 1454, 1415, 1330, 1136, 735; LRMS (EI, 70 eV) *m*/*z* (%): 299 (M⁺, 100), 279 (10), 230 (14), 149 (12), 114 (7); HRMS (ESI) calcd for C₁₈H₁₃F₃N⁺ ([M + H]⁺) 300.0995; found, 300.0993.

3-Methoxy-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3**). Yellow solid (54.1 mg, 86% yield), mp 107.1–108.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 9.0 Hz, 2H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.38–7.31 (m, 2H), 7.26 (s, 1H), 7.21 (s, 1H), 7.19–7.17 (m, 1H), 7.04 (s, 1H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 136.2, 130.8, 129.8, 127.2, 125.6 (q, *J*_{C-F} = 34.4 Hz), 125.0, 122.5, 121.6 (q, *J*_{C-F} = 270.3 Hz), 121.5, 120.9, 120.4, 118.6, 113.8 (q, *J*_{C-F} = 7.6 Hz), 111.8 (q, *J*_{C-F} = 7.1 Hz), 109.7, 94.8, 55.5; ¹⁹F NMR (470 MHz, CDCl₃) δ: -63.2 (s, 3F); IR (neat, cm⁻¹): 2830, 1644, 1607, 1456, 1407, 1253, 1122, 736; LRMS (EI, 70 eV) *m/z* (%): 315 (M⁺, 100), 300 (25), 272 (56), 203 (13), 158 (11); HRMS (ESI) calcd for C₁₈H₁₃F₃NO⁺ ([M + H]⁺) 316.0944; found, 316.0946.

3-Chloro-6-(trifluoromethyl)indolo[2,1-a]isoquinoline (**3m**). Yellow solid (36.0 mg, 56% yield), mp 130.0–131.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08–8.05 (m, 2H), 7.83–7.81 (m, 1H), 7.58 (s, 1H), 7.52–7.50 (m, 1H), 7.39–7.37 (m, 3H), 7.15 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.1, 133.5, 131.1, 130.0, 129.5, 127.1, 126.3 (q, J_{C-F} = 34.6 Hz), 123.6 (q, J_{C-F} = 270.4 Hz), 122.8, 120.8, 113.9 (q, J_{C-F} = 7.6 Hz), 110.8 (q, J_{C-F} = 7.1 Hz), 97.0; ¹⁹F NMR (470 MHz, CDCl₃) δ: -63.4 (s, 3F); IR (neat, cm⁻¹): 3076, 1568, 1483, 1450, 1403, 1295, 1118, 730; LRMS (EI, 70 eV) *m*/*z* (%): 321 (M⁺, 34), 319 (M⁺, 100), 299 (12), 263 (5), 214 (12), 159 (14) ; HRMS (ESI) calcd for C₁₇H₁₀ClF₃N⁺ ([M + H]⁺) 320.0449; found, 320.0448.

2-*Fluoro-6-(trifluoromethyl)indolo*[2,1-*a*]*isoquinoline* (**3***n*). Yellow solid (33.3 mg, 55% yield), mp 123.8–125.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09–8.08 (m, 1H), 7.85–7.83 (m, 1H), 7.80–7.78 (m, 1H), 7.62–7.59 (m, 1H), 7.41–7.37 (m, 3H), 7.24 (s, 1H), 7.20–7.16 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.3 (d, J_{C-F} = 248.5 Hz), 135.0, 131.2, 130.2 (d, J_{C-F} = 9.1 Hz), 129.3, 129.2 (d, J_{C-F} = 9.5 Hz), 124.6 (q, J_{C-F} = 34.8 Hz), 122.7, 122.6, 122.2, 121.6 (q, J_{C-F} = 270.3 Hz), 120.9, 116.2 (d, J_{C-F} = 23.3 Hz), 114.0 (q, J_{C-F} = 7.6 Hz), 111.4 (q, J_{C-F} = 6.6 Hz), 109.2 (d, J_{C-F} = 23.4 Hz), 97.4; ¹⁹F NMR (470 MHz, CDCl₃) δ: -63.1 (s, 3F), -108.7 (s, 1F); IR (neat, cm⁻¹): 3020, 1607, 1565, 1495, 1416, 1325, 1118, 734; LRMS (EI, 70 eV) *m*/*z* (%): 303 (M⁺, 100), 283 (12), 234 (20), 152 (14), 127 (7); HRMS (ESI) calcd for C₁₇H₁₀F₄N⁺ ([M + H]⁺) 304.0744; found, 304.0740.

3,6-Bis(trifluoromethyl)indolo[2,1-a]isoquinoline (**30**). Yellow solid (51.5 mg, 73% yield), mp 100.4–102.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.5 Hz, 1H), 8.09–8.08 (m, 1H), 7.86–7.83 (m, 2H), 7.75 (d, J = 8.5 Hz, 1H), 7.47 (s, 1H), 7.42–7.40 (m, 2H), 7.25 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 134.6, 131.3, 129.7, 129.6 (q, J_{C-F} = 32.6 Hz), 129.3, 126.5 (q, J_{C-F} = 34.8 Hz), 125.9 (q, J_{C-F} = 3.4 Hz), 125.6, 125.0 (q, J_{C-F} = 4.0 Hz), 123.8, 123.8 (q, J_{C-F} = 270.5 Hz), 123.1, 122.9, 121.3 (q, J_{C-F} = 270.4 Hz), 121.1, 114.0 (q, J_{C-F} = 7.6 Hz), 111.2 (q, J_{C-F} = 7.1 Hz), 98.5; ¹⁹F NMR (470 MHz, CDCl₃) δ : –62.5 (s, 3F), –63.5 (s, 3F); IR (neat, cm⁻¹): 3028, 1615, 1556, 1458, 1402, 1313, 1118, 737; LRMS (EI, 70 eV) *m*/*z* (%): 353 (M⁺, 100), 333 (10), 284 (11), 277 (13), 151(6); HRMS (ESI) calcd for C₁₈H₁₀F₆N⁺ ([M + H]⁺) 354.0712; found, 354.0703.

5-(*Trifluoromethyl*)*pyrrolo*[2,1-*a*]*isoquinoline* (*5a*). Yellow oil (32.9 mg, 70% yield); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 1H), 7.63–7.50 (m, 3H), 7.40–7.35 (m, 1H), 7.24 (s, 1H), 7.07–7.05 (m, 1H), 6.83–6.81 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 130.7, 129.7, 128.2, 127.4, 126.0, 124.2, 123.9, 122.0, 121.3 (q, *J*_{C-F} = 270.1 Hz), 114.6 (q, *J*_{C-F} = 2.9 Hz), 112.9, 112.3 (q, *J*_{C-F} = 5.1 Hz), 101.1; ¹⁹F NMR (470 MHz, CDCl₃) δ: –68.8 (s, 3F); IR (neat, cm⁻¹): 3058, 1646, 1500, 1447, 1423, 1116, 749; LRMS (EI, 70 eV) *m/z* (%): 235 (M⁺, 100), 216 (5), 166 (16), 139 (8), 117 (8); HRMS (ESI) calcd for C₁₃H₉F₃N⁺ ([M + H]⁺) 236.0682; found, 236.0688.

1,3-Dimethyl-5-(trifluoromethyl)pyrrolo[2,1-a]isoquinoline (**5b**). Yellow solid (32.1 mg, 61% yield), mp 122.1–123.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.27 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 6.9 Hz, 1H), 7.52–7.46 (m, 1H), 7.32–7.28 (m, 2H), 6.41 (s, 1H), 2.91 (s, 3H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.7, 129.6, 128.9, 126.4, 123.5 (q, J_{C-F} = 269.8 Hz), 123.3, 122.7 (q, J_{C-F} = 3.6 Hz), 120.6, 120.2 (q, J_{C-F} = 32.5 Hz), 119.4, 117.9 (q, J_{C-F} = 7.4 Hz), 115.8, 112.2, 18.6, 13.0; ¹⁹F NMR (470 MHz, CDCl₃) δ : -60.3 (s, 3F); IR (neat, cm⁻¹): 3024, 2936, 1643, 1517, 1457, 1327, 1116, 740; LRMS (EI, 70 eV) m/z (%): 263 (M⁺, 100), 248 (25), 178 (7), 122 (10); HRMS (ESI) calcd for C₁₅H₁₃F₃N⁺ ([M + H]⁺) 264.0995; found, 264.0998.

9-Methyl-5-(trifluoromethyl)pyrrolo[2,1-a]isoquinoline (5c). Yellow oil (30.8 mg, 62% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.50–7.48 (m, 2H), 7.20–7.18 (m, 2H), 7.02 (d, J = 3.0 Hz, 1H), 6.79 (t, J = 3.0 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.0, 130.7, 128.1, 127.5, 127.4, 123.2 (q, $J_{C-F} = 34.6$ Hz), 122.0, 121.9, 121.5 (q, $J_{C-F} = 270.0$ Hz), 114.5 (q, $J_{C-F} = 2.9$ Hz), 112.7, 112.4 (q, $J_{C-F} = 5.1$ Hz), 100.8, 21.9; ¹⁹F NMR (470 MHz, CDCl₃) δ: -68.7 (s, 3F); IR (neat, cm⁻¹): 2974, 1620, 1504, 1408, 1326, 1121, 744; LRMS (EI, 70 eV) m/z (%): 249 (M⁺, 100), 180 (15), 152 (9), 124 (8); HRMS (ESI) calcd for C₁₄H₁₁F₃N⁺ ([M + H]⁺) 250.0838; found, 250.0844.

8-Methoxy-5-(trifluoromethyl)pyrrolo[2,1-a]isoquinoline (5d). Yellow solid (38.6 mg, 73% yield), mp 53.5–54.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 1H), 7.45 (s, 1H), 7.20–7.17 (m, 2H), 7.06 (s, 1H), 6.93–6.92 (m, 1H), 6.80–6.79 (m, 1H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 131.0, 125.6, 124.5 (q, J_{C-F} = 34.6 Hz), 123.7, 121.5, 121.4 (q, J_{C-F} = 270.4 Hz), 119.1, 113.7 (q, J_{C-F} = 2.9 Hz), 112.9, 111.9 (q, J_{C-F} = 5.1 Hz),109.6, 99.4, 55.5; ¹⁹F NMR (470 MHz, CDCl₃) δ : -68.9 (s, 3F); IR (neat, cm⁻¹): 2931, 1615, 1559, 1473, 1309, 1175, 733; LRMS (EI, 70 eV) m/z (%): 265 (M⁺, 100), 250 (76), 222 (47), 153 (10), 132 (8); HRMS (ESI) calcd for C₁₄H₁₁F₃NO⁺ ([M + H]⁺) 266.0787; found, 266.0795.

8-Chloro-5-(trifluoromethyl)pyrrolo[2,1-a]isoquinoline (**5e**). Yellow solid (33.0 mg, 61% yield), mp 61.3–62.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.5 Hz, 1H), 7.58 (s, 1H), 7.50–7.47 (m, 2H), 7.13 (s, 1H), 7.03–7.02 (m, 1H), 6.82 (t, *J* = 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 131.5, 131.1, 130.0, 127.4, 125.7, 125.4, 125.1 (q, *J*_{C-F} = 34.9 Hz), 123.5, 121.1 (q, *J*_{C-F} = 270.5 Hz), 114.9 (q, *J*_{C-F} = 2.9 Hz), 113.3, 111.1 (q, *J*_{C-F} = 5.3 Hz), 101.5; ¹⁹F NMR (470 MHz, CDCl₃) δ : –69.0 (s, 3F); IR (neat, cm⁻¹): 3024, 1656, 1550, 1453, 1407, 1124, 741; LRMS (EI, 70 eV) *m*/*z* (%): 271 (M⁺, 34), 269 (M⁺, 100), 234 (11), 200 (9), 117 (6); HRMS (ESI) calcd for C₁₃H₈CIF₃N⁺ ([M + H]⁺) 270.0292; found, 270.0300.

The Journal of Organic Chemistry

9-Fluoro-5-(trifluoromethyl)pyrrolo[2,1-a]isoquinoline (5f). Yellow solid (34.8 mg, 68% yield), mp 56.3–57.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.67–7.60 (m, 2H), 7.51 (s, 1H), 7.22 (s, 1H), 7.12–7.08 (m, 1H), 7.04–7.03 (m, 1H), 6.83–6.82 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.4 (d, J_{C-F} = 248.0 Hz), 130.6 (d, J_{C-F} = 9.4 Hz), 130.0 (d, J_{C-F} = 4.1 Hz), 129.1 (d, J_{C-F} = 10.0 Hz), 123.5 (q, J_{C-F} = 34.9 Hz), 121.3 (q, J_{C-F} = 270.1 Hz), 120.7, 115.2 (q, J_{C-F} = 2.9 Hz), 114.6 (d, J_{C-F} = 23.6 Hz), 113.1, 111.7 (q, J_{C-F} = 4.8 Hz), 107.6 (d, J_{C-F} = 23.3 Hz), 102.1; ¹⁹F NMR (470 MHz, CDCl₃) δ: -68.8 (s, 3F), -109.0 (s, 1F); IR (neat, cm⁻¹): 3032, 1623, 1505, 1411, 1328, 1112, 740; LRMS (EI, 70 eV) *m*/*z* (%): 253 (M⁺, 100), 184 (24), 157 (8), 127 (15); HRMS (ESI) calcd for C₁₃H₈F₄N⁺ ([M + H]⁺) 254.0588; found, 254.0582.

5,8-Bis(trifluoromethyl)pyrrolo[2,1-a]isoquinoline (**5***g*). Yellow solid (30.3 mg, 50% yield), mp 67.2–68.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 8.5 Hz, 1H), 7.89 (s, 1H), 7.75–7.73 (m, 1H), 7.56 (s, 1H), 7.26–7.25 (m, 1H), 7.16–7.15 (m, 1H), 6.88–6.87 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 129.8, 129.6, 127.8 (q, *J*_{C-F} = 32.6 Hz), 125.8 (q, *J*_{C-F} = 3.5 Hz), 125.5 (q, *J*_{C-F} = 4.2 Hz), 125.1 (q, *J*_{C-F} = 34.9 Hz), 123.8, 122.6, 121.8 (q, *J*_{C-F} = 270.3 Hz), 121.0 (q, *J*_{C-F} = 270.5 Hz), 115.8 (q, *J*_{C-F} = 2.8 Hz), 113.7, 111.7 (q, *J*_{C-F} = 5.0 Hz), 103.1; ¹⁹F NMR (470 MHz, CDCl₃) δ: -62.3 (s, 3F), -69.1 (s, 3F); IR (neat, cm⁻¹): 2974, 1624, 1473, 1410, 1349, 1074, 743; LRMS (EI, 70 eV) *m*/*z* (%): 303 (M⁺, 100), 284 (10), 234 (16), 151 (7); HRMS (ESI) calcd for C₁₄H₈F₆N⁺ ([M + H]⁺) 304.0556; found, 304.0553.

(Z)-1-(3,3,3-Trifluoro-1-phenylprop-1-en-2-yl)-1H-indole (6). Colorless oil (29.3 mg, 51% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 1H), 7.43–7.40 (m, 1H), 7.34–7.31 (m, 2H), 7.26–7.25 (m, 1H), 7.18–7.16 (m, 2H), 7.13–7.10 (m, 1H), 7.05–7.02 (m, 1H), 6.79 (d, *J* = 8.5 Hz, 1H), 6.71–6.70 (m, 1H), 6.18–6.13 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 146.6 (q, *J*_{C-F} = 5.5 Hz), 136.7, 135.3, 131.0, 129.6 (q, *J*_{C-F} = 1.9 Hz), 129.2, 129.0, 127.2, 122.5, 122.3 (q, *J*_{C-F} = 268.1 Hz), 121.0, 120.8, 111.8, 111.5 (q, *J*_{C-F} = 34.9 Hz), 104.4; ¹⁹F NMR (470 MHz, CDCl₃) δ : –57.8 (s, 3F); IR (neat, cm⁻¹): 3030, 1651, 1573, 1457, 1398, 1268, 1119, 757; LRMS (EI, 70 eV) *m*/*z* (%): 287 (M⁺, 100), 218 (31), 151 (53), 117 (61), 89(14); HRMS (ESI) calcd for C₁₇H₁₃F₃N⁺ ([M + H]⁺) 288.0995; found, 288.0996.

(Z)-1-(1-(2-Bromophenyl)-3,3,3-trifluoroprop-1-en-2-yl)-1H-indole (**7**). Yellow oil (29.9 mg, 41% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (s, 1H), 7.58–7.56 (m, 1H), 7.55–7.53 (m, 1H), 7.12–7.11 (m, 1H), 7.10–7.05 (m, 3H), 7.02–6.98 (m, 1H), 6.81–6.78 (m, 1H), 6.68–6.67 (m, 1H), 6.38–6.36 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.9, 132.9, 132.0 (q, J_{C-F} = 4.1 Hz), 131.4, 131.1, 128.9, 128.7, 127.4, 127.1, 126.4 (q, J_{C-F} = 34.0 Hz), 124.9, 123.0, 121.7 (q, J_{C-F} = 273.8 Hz), 120.9, 120.8, 110.6, 105.4; ¹⁹F NMR (470 MHz, CDCl₃) δ : –68.3 (s, 3F); IR (neat, cm⁻¹): 3058, 1653, 1517, 1457, 1435, 1266, 1122, 741; LRMS (EI, 70 eV) *m/z* (%): 365 (M⁺, 18), 367 (M⁺, 18), 286 (100), 217 (29), 151 (53), 133 (9), 108(8); HRMS (ESI) calcd for C₁₇H₁₂BrF₃N⁺ ([M + H]⁺) 366.0100; found, 366.0097.

ASSOCIATED CONTENT

S Supporting Information

Copies of ¹H and ¹³C NMR of compounds 3a-3o, 5a-5g, 6, and 7, and X-ray data of 3e. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: zxg@wzu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (No. 21002070 and 21102104) and Zhejiang Provincial Natural

Science Foundation of China (No. Y4100307) for financial support.

■ REFERENCES

(1) (a) Anderson, W. K.; Heider, A. R.; Raju, N.; Yucht, J. A. J. Med. Chem. **1988**, 31, 2097. (b) Goldbrunner, M.; Loidl, G.; Polossek, T.; Mannschreck, A.; von Angerer, E. J. Med. Chem. **1997**, 40, 3524. (c) Ambros, R.; von Angerer, S.; Wiegrebe, W. Arch. Pharm. **1988**, 321, 481. (d) Ambros, R.; von Angerer, S.; Wiegrebe, W. Arch. Pharm. **1988**, 321, 743.

(2) (a) Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev.
2001, 101, 1267. (b) Ahmed, E.; Briseno, A. L.; Xia, Y.; Jenekhe, S. A. J. Am. Chem. Soc. 2008, 130, 1118. (c) Boden, N.; Bissell, R.; Clements, J.; Movaghar, B. Liq. Cryst. Today 1996, 6, 1. (d) Chandrasekhar, S. Liq. Cryst. 1993, 14, 3.

(3) (a) Ewing, J.; Hughes, G. K.; Ritchie, E.; Taylor, W. C. Nature 1952, 169, 618. (b) Moskowitz, H.; Leboeuf, M.; Care, A.; von Angerer, A. Can. J. Chem. 1989, 67, 947.

(4) (a) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2068. (b) Lötter, A. N. C.; Pathak, R.; Sello, T. S.; Fernandes, M. A.; van Otterlo, W. A. L.; de Koning, C. B. Tetrahedron 2007, 63, 2263. (c) de Koning, C. B.; Michael, J. P.; Pathak, R.; van Otterlo, W. A. L. Tetrahedron Lett. 2004, 45, 1117. (d) Mamane, V.; Hannen, P.; Fürstner, A. Chem.—Eur. J. 2004, 10, 4556. (e) Waldmann, H.; Eberhardt, L.; Wittsteinab, K.; Kumar, K. Chem. Commun. 2010, 46, 4622. (f) Menes-Arzate, M.; Martinez, R.; Cruz-Almanza, R.; Muchowski, J. M.; Osornio, Y. M.; Miranda, L. D. J. Org. Chem. 2004, 69, 4001. (g) Reboredo, F. J.; Treus, M.; Estévez, J. C.; Castedo, L.; Estévez, R. J. Synlett 2003, 1603. (h) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci. 2012, 3, 177.

(5) (a) Ambros, R.; Schneider, M. R.; von Angerer, S. J. Med. Chem.
1990, 33, 153. (b) Elwan, N. M.; Abdelhadi, H. A.; Abdallah, T. A.; Hassaneen, H. M. Tetrahedron 1996, 52, 3451. (c) Zhao, B.-X.; Yu, Y.; Eguchi, S. Tetrahedron 1996, 52, 12049. (d) Katritzky, A. R.; Qiu, G.; Yang, B.; He, H.-Y. J. Org. Chem. 1999, 64, 7618. (e) Orito, K.; Uchiito, S.; Satoh, Y.; Tatsuzawa, T.; Harada, R.; Takuda, M. Org. Lett.
2000, 2, 307. (f) Barun, O.; Chakrabarti, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2001, 66, 4457. (g) Orito, K.; Harada, R.; Uchiito, S.; Tokuda, M. Org. Lett. 2000, 2, 1799. (h) Vincze, Z.; Beatrix Bíró, A.; Csékei, M.; Timári, G.; Kotschy, A. Synthesis 2006, 1375.

(6) (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467. Selected reviews: (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (d) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (e) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. (f) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (g) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478. (h) Werner, H. Angew. Chem., Int. Ed. 2010, 49, 4714. (i) Thansandote, P.; Lautens, M. Chem.—Eur. J. 2009, 15, 5874. (j) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (k) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677.

(7) (a) Kantak, A. A.; Potavathri, S.; Barham, R. A.; Romano, K. M.; DeBoef, B. J. Am. Chem. Soc. 2011, 133, 19960. (b) Ruck, R. T.; Huffman, M. A.; Kim, M. M.; Shevlin, M.; Kandur, W. V.; Davies, I. W. Angew. Chem., Int. Ed. 2008, 47, 4711. (c) Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841. (d) Serna, S.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. Org. Lett. 2005, 7, 3073. (e) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429. (f) Xu, R.; Wan, J.-P.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010, 132, 15531. (g) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403. (h) Ackermann, L.; Althammer, A.; Mayer, P. Synthesis 2009, 3493. (i) Bedford, R. B.; Betham, M.; Charmant, J. P. H; Weeks, A. L. Tetrahedron 2008, 64, 6038.

(8) Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. Angew. Chem., Int. Ed. 2009, 48, 1138.

(9) Liao, Q.; Zhang, L.; Li, S.; Xi, C. Org. Lett. 2011, 13, 228.

- (10) (a) Schlosser, M. Angew. Chem., Int. Ed. 2005, 44, 214.
- (b) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.

The Journal of Organic Chemistry

(c) Purser, S.; Moore; P., R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (d) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(e) Welch, J. T. Tetrahedron 1987, 43, 3123.

(11) (a) Chen, M.-W.; Zhang, X.-G.; Zhong, P.; Hu, M.-L. Synthesis 2009, 1431. (b) Dong, S.-X.; Zhang, X.-G.; Liu, Q.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Synthesis 2010, 1521. (c) Li, C.-L.; Zhang, X.-G.; Tang, R.-Y.; Zhong, P.; Li, J.-H. J. Org. Chem. 2010, 75, 7037.

(12) (a) Fujita, M.; Hiyama, T. Bull. Chem. Soc. Jpn. 1987, 60, 4377.
(b) Korotchenko, V. N.; Shastin, A. V.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2001, 57, 7519. (c) Chen, M.-W.; Zhang, X.-G.; Zhong, P.; Hu, M.-L. Synth. Commun. 2009, 39, 756.

(13) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.